AAL, HW1 solution

1. Let H and K be subgroups of the group G. Prove that $H K$ is a subgroup of G if and only if $H K=K H$.

Solution:

Assume first that $H K=K H$.
$1=1 * 1 \in H K$ since 1 is contained in every subgroup of G.
We prove that $H K$ is closed under multiplication: Let $h_{1}, h_{2} \in H, k_{1}, k_{2} \in$ H. Then $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}$ can be written as $h_{1}\left(h_{3} k_{3}\right) k_{2}$ for some $h_{3} \in H, k_{3} \in K$ since $H K=K H$. Now $h_{1}\left(h_{3} k_{3}\right) k_{2}=\left(h_{1} h_{3}\right)\left(k_{3} k_{2}\right) \in$ $H K$ since $h_{1} h_{3} \in H$ and $k_{3} k_{2} \in K$ follows from the fact that H and K are subgroups.
Assume now that $H K$ is a subgroup.
Let $k h \in K H(h \in H, k \in K)$. Clearly, $(k h)=\left(h^{-1} k^{-1}\right)^{-1} \in H K$ since $H K$ is a subgroup of G. Thus $K H \subseteq H K$.
Let $h k \in H(h \in H, k \in K)$. Then $(h k)^{-1} \in H K$ since $H K \leq G$ so $(h k)^{-1}=$ $h_{1} k_{1}$ for some $h_{1} \in H, k_{1} \in K$. This implies $h k=\left(h_{1} k_{1}\right)^{-1}=k_{1}^{-1} h_{1}^{-1} \in K H$ since K and H are inverse closed.
2. Let G be the set of upper triangular $3 \star 3$ matrices over the field \mathbb{F}_{3}, whose diagonal elements are 1.

$$
G:=\left\{\left.\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}_{3}\right\}
$$

G is a group with respect to matrix multiplications show that
(a) Verify that every nonidentity element of G is of order 3 .

Solution:

$$
\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{3}=\left(\begin{array}{ccc}
1 & 3 a & 3 c+3 a b \\
0 & 1 & 3 b \\
0 & 0 & 1
\end{array}\right)=I_{3}
$$

Then the order of this element divides 3 so it can only be 1 since the only element of order 1 in a group is the identity element.
(b) Calculate the center of the group G.

Solution:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a+x & a y+c+z \\
0 & 1 & b+y \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a+x & b x+c+z \\
0 & 1 & b+y \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

It follows that if $\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$ is in the center of G, then $a y=b x$ for every $x, y \in \mathbb{F}_{3}$. If $a \neq 0$, then $a y \neq b x$ if $x=0$ and $y=1$, while if $b \neq 0$, then $a y \neq b x$ if $y=0$ and $x=1$. Thus $a=0$ and $b=0$.
On the other hand G is a p-group so its center is nontrivial so it is or order at least 3. Therefore $Z(G)=\left\{\left.\left(\begin{array}{ccc}1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, c \in \mathbb{F}_{3}\right\}$.

Simple matrix calculations show that
3. Assume that $G / \mathrm{Z}(G)$ is cyclic. Prove that G is abelian.

Solution: Every element of can be written as $x^{i} z$, where $x Z(G)$ generates $G / Z(G)$ and $z \in Z(G)$. Then it is easy to see that $x^{i} z$ and $x^{j} z^{\prime}$ commute since z and z^{\prime} are in $Z(G)$.

